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The determination of the true profile of a spectral line, by H. C. van de Hulst.

1. In order to determine accurately the true
profile of a spectral line, it is necessary to take
into account the deforming influence of the spectral
apparatus. This influence is characterized by the
instrumental curve, i.e. the profile of an ideal narrow

spectral line, shown by the imperfect instrument. We |

denote this profile by A(x), x being an arbitrary
measure for wavelength or frequency; this function
+ 0

must be normalized so that f A(x)dx =

If a line has itself a finite w1dth each ordinate
will be obliterated in the same way, so that not the
true profile T(x), but an apparent one O(x) =

f T(y) A(x—y) dyisobserved. This integral-operation

means the obliteration of T by A. For simplicity we
shall in the following denote O, T and A, and similar
functions, by heavy types. For this integral-operation
we shall use the abridged notation O = T.A, and
call this ,,the multiplication of T by A’. This convention
can be more or less justified by the validity of the
relations: A.B = B.A, A.(B.C) =
A.(B + C) = A.B + A.C, which can easily be proved.

2. The problem set by practice is: Determine T,
when O and A are given profiles. In this article a
method is developed for solving this problem in a
rather simple way; besides it will be possible to make
an estimate of the accuracy reached.

The obvious and not new solution of the problem
is: Find an operating-function B, of such a nature that,
multiplied by O, it gives T. One property, which B

must necessarily possess, can be seen at once: beside |

positive values it must also assume negative ones,
otherwise it would obliterate O still further. B must
likewise be normalized to 1.

Using the properties mentioned of the multiplica-
tion, and introducing the unity-function 1, an extremely
narrow peak normalized to one, our ideal should

(A.B).C and

be to find such a function B, that
O0B=(TA)B=T.(AB) =T.1 =T.

This, however, requires the solution of the integral-
equation A.B = 1, which is theoretically impossible.
We have always to deal with the operation:

0B = (TA)B=T.(AB) =TA’ =0’

where A’ £ 1, and 0’ £ T. This is the fundamental
formula for any operation on a line-profile. The operation
of any B on O always yields a new profile O, that may be also
conceved to result from a direct registration of T by another
apparatus having the instrumental profile A’ = A.B. The
bearing of this statement is that, as regards the
choice of B, we need not take into account the par-
ticular spectral line, which we want to correct, but
that we only have to reckon with the resulting A’.
This can never become the unity-function itself, but
it should sufficiently closely resemble 1, i.e. be
sufficiently narrow.

3. Before proceeding to the different methods for
choosing a suitable operatmg-functlon B, we have
to fill up a gap in the former reasonmg The extremely
narrow peak normalized to one is, mathematically,
not yet completely defined. This may be accom-
plished by forming from each profile-function, e.g.

‘AA(x), the , integral-function” «(x) = fA(y)dy. This

-

‘a(x) increases continuously, from o for x = — 20 to
1 for x = 4 0. The integral-function of the unity

peak has now the values:

a(x) = o for x < o
a(x) = 1 for x > o
discontinuity for x = o.

In this way innumerable new profile-functions,
having an integral-function with points of discon-
tinuity, may be defined. If the integral-function
changes its value only in these points, the profile-
function consists of discrete peaks only, whence we
shall call it a ,,peak-function”. We shall choose our
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B more particularly from this group of functions.

One may still remark, that this new group of func-
tions makes a new definition of multiplication
necessary; «(x), 3(x), y(*) being the integral-functions

+
of A, B and C, this definition is a(x) = [B(x) dy(x).
: -2

The 'integral is a StiELTJEs-integral. In the case of
continuous profile-functions it is reduced to the
former definition; in the case of peak-functions it
means a simple summation of a number of products
b/;(,‘kl).

4. The first method to choose an operating-

function B, has been given by BurGEr and vaN
CrrrerT 2). They choose a seriés of possible functions
B., equal to the development of Kl = m,
broken off at the n-th term.
Bo=1+(0—-A) 4+ —-A)2+....+(1—A)>
eg. B =1;B;, =2 — A; B, =3 — 3A + A2
Generally speaking, Ba consists of a central peak n,
and a continuous function, which in the central part
is negative, but in the wings of alternating sign;
Burcer and van CrirTert call this function Y.
The result reached may be judged by A's = Ba. A =
1 — (1 — A)~+1 For further details the reader is
referred to the publications.

One may observe that A.B, — 1, therefore
0.B. —~ T converge indeed for n - 20, but that
B. itself has no definite function as a limit. For that
reason we have in any case to resort to an approx-
imation.

5. It would seem now, that, using this method,
we can compute T within any degree of accuracy
that may be desired. This, however, is not true.
Beside the practical drawback that each operation
A.A = A2 A2A = A3, etc. takes much time, there
is another essential objection. The random measuring-
or reading-errors of O are, by the operation B, first

_ multiplied by n, and then increased and decreased

by several terms; the random errors resulting in 0’
will therefore be much greater than the original ones
in 0. This objection is peculiar to all B’s, whichever
we choose. The narrower we. make A’, the more
enlarged the random errors of O will enter into 0’.
This is not astonishing, for otherwise it would be
possible to perform very accurate measurements with

1) The method, by which voN NEUMANN joins wave mecha-
nics and quantum mechanics in a single strictly mathematical
system is, more-dimensionally, essentially the same. J. v.
NeuMANN, Die Grundlagen der Quantenmechanik, Berlin 1932.

2) H. C. Burcer und P. H. van CirterT, ,,Wahre und
scheinbare Intensitdtsverteilung in Spektrallinien”, Zs. f. Phys. 79,

722, 1932; 81, 428, 1933.
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an instrument of very low dispersion. In practice
one must decide on a compromise between the errors
caused by the finite width of A’, and the ran-
dom errors in Q’. The result will be most favour-
able, when both errors are of the same order. We
observe, by-the-way, that the place of this optimum
does indeed depend on the profiles operated upon.
For the flat line wings an operation is superfluous
and even obnoxious owing to the enlarged random
errors. On the other hand in the narrow cores we
will readily permit some larger random errors, in
order to make A’ narrow enough, i.e. the profile
0’ pure enough.

6. Our method is to use as operating-function
a suitable peak-function. We shall briefly indicate
its advantages. First, the important advantage is
that it is easy to operate with. For, when B consists
of n, e.g. 10 peaks, each integral for the computation
of one point.of 0’ = B.0 is now reduced to a simple
summation of n products, e.g.:

0y = ¥ b

Herein the #s are the heights of B’s peaks, and
the Oy’s are the ordinates of O at the corresponding
abscissae. In numerical as well as in mechanical
computing this means an important simplification.
One obtains a particularly simple survey of the
computation, when all distances between the peaks
are chosen equal to one ,,peak-distance’” d, or simple
multiples of it. In the choice of B we have confined
ourselves to this kind of ,,equidistant peak-functions™.

Beside the operations with B the convenience of
computing B #tself must be taken into account. Our
method is wholly unlike that of Burcer and VAN
CrrrerT, which provides a series of approximations.
Once having chosen the peak-distance 4, on which
parameter the width of ‘the resulting A’ and con-
sequently the enlarging factor of the random errors
depends, our purpose is to choose the best B directly.
It would be advisable to have some B’s with different
parameters in store for one and the same apparatus,
and to use one for very narrow lines, an other for
less narrow lines, etc. Considering that for one
instrumental curve such a B would have to be
computed only once for all, some amount of labour
would certainly be worthwhile.

As to the appropriateness ‘of this method one
might remark that, operating with sucha peak-function
only a very small part of the data is used in comput-
ing an ordinate of Q’, e.g. its central intensity; it
appears difficult to believe that the accuracy is equal
to that, reached by using a continuous operating-
function. Though it seems impossible to give a
complete elucidation of this question, we shall show
the way of solving it. Suppose that we had found a
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satisfactory continuous B, e.g. by the method of
B.—v.C.; then A’ = A.B would still have a finite
width, from which it follows that all details in T,
within such a width w, would be almost completely
obliterated in Q'. Foreseeing this we can, without
making 0’ much worse, take the drastic measure
to divide B into strips of width w and then contract
each of these into a peak, making B a peak-function
with peak-distance d = w. Comparing now this
peak B with the former continuous B, we may draw
the conclusion that the above remark is wrong; for
either:

1. 0 is completely smooth between the points
used. Then there is no objection to use only these
points, or:

2. 0 has some unexpected details between these
points; this can only be caused by T having such
details, narrower than 4. In this case the resulting
profile O’ will not be the true one. But then this is
due to the insufficient narrowness of A’, and not
to the fact that a peak-function is used instead of a
continuous operating-function 1). This is only a short
indication of the nature of the problem, which will
suffice for the time being.

1. The determination of B. .

The possibility just touched upon of contracting
the strips of a continuous B has of course no practical
meaning. In practice we can determine B by two
methods.

a) By way of trial.

This is done graphically. In the centre A is drawn
and two reduced replicas of A, placed at a dis-
tance d to the left and to the right, aresubtracted,
so as to suppress the wings of A as completely as
possible. B has now a positive central peak and two
negative peaks near it. This kind of operating-
function has first been used by vaN ArBapaA 2).
By further negative-or positive peaks the wings may
be still more completely suppressed. In order to
be used as an operating-function, the peak-function
found in this way must be normalized to 1. This
graphical determination may be carried out with
the original instrumental curve or with its integral-
function. We recommend the last, lest a considerable
area in the far wings would remain uncorrected.
This trial method, which is very helpful to suppress
the wings of the instrumental curve, grows trouble-
some, when one wants a narrower core for it. Then
it is difficult to find the right reducing coefficients,
and an other method is needed.

1) Here too an analogy with quantum mechanics may be
observed: The matrixelements, though apparently containing
less than the wave functions, actually contain no fewer physical
data. .

2) B.A.N. No. 301, 8, 179, 1637.

UTRECHT 227

b) By solution of a system of linear equations.

We shall illustrate this method, which leaves a
considerable freedom for modification, by a numerical -
example, the result of which may be interesting our
readers too. In the new Photometric Atlas of the Solar
Spectrum, edited by the Utrecht Observatory 1), the
profiles of the Fraunhofer lines havestillan appreciable
instrumental obliteration. It would be very useful
to eliminate this in a correct way. This indeed was
the reason why this subject, first by Dr. P. KrREMER,
was entered upon.

8. The instrumental curve for exposures in the
second order near 1 6000 is given. The peak-distance

is chosen equal to d = 30 m./gx, i.e. 06 mm in the
registrograms. First A is divided from the centre into
strips of width d, the areas of which are:

To the left: 472, 181, 62, 24, 12, 19, 9, 10, 9, 6,
4 4 4 3 2.

To the right: 472, 181, 70, 45, 35, 22, 15, II, 8,
7, 0, 6, 4, 3, 2.

In total: to the left 813, to the right 887, together
1700 (measured arbitrarily with abscissa-unit =

o
5 mA, ordinate-unit = 1/100 of max. ordinate).
Next we symmetrize the curve:

To the left

472, 181, 66, 35, 24, 16, 12, 11, 9,
To the right '

6, 5,5 4,3, 1.

Now, for a while, we imagine these strips contracted
to peaks at distances # d, I3 d, 2} d, etc. from the
centre. Then we require that this peak-instrumental
curve A,, multiplied by B, shall yield a peak-function
A,.B consisting of only two peaks of height 850, # d
apart from the centre. This requirement, which
appears the most efficient one, is equivalent to fixing
the points 4 (= 850) in the centre, o at distance
— d, — 2 d, etc. from the centre, and 1 (= 1700)
at distances -+ d, + 2 d, etc. from the centre, of the
integral-function of the resulting instrumental curve
A.B, as may be easily shown. This requirement can
strictly be complied with mathematically. The B
defined in this way consists of a central peak by,
and peaks by, by, b3 ctc. at distances d, 2d, 3d, etc. to
the left and to the right. These unknown quantities
satisfy the equations:

850 = 472 by + 653 b + 247 b2 + 101 by + . ..
o= 181 by + 538 by + 507 b2 + 205 by + ...
o 66bg+216b1+496b2+488b3+
o= 135by+ 90b; + 197 bs + 484 b3 + ...
. .« .« .« .+« . . . . . .adinf

I

1) MinNaERT, Houtcast and MuLpERs: Phofomelric Atlas of
the Solar Spectrum, Amsterdam 1940.
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Ficure 1.
1 T
! ]
-100 -50 O 50. 100 mA
-2 -1 o | 2 mm in Atlas

Integral curves of A, original instrumental curve, and A.B = A’, resulting instrumental curve after operation by B; it is equiva-

lent to a slit with a width of 52 mA (dotted line). The points of A’ fixed beforehand (black dots) are not quite reached
by the curve, owing to the graphical corrections applied afterwards.

In order to solve them approximately, we cut the

- system beyond the ninth equation and the ninth

unknown quantity bs; then by a method analogous
to the method used by Gauss for solving normal
equations, the unknown quantities bg, b7, bgs, bs, by,
3 bo b b2 bs bs
146 —o'8o —0'03 )
The sum ought to be exactly equal to 3.

—0°'0§

b3, bs, b; are successively eliminated!). In this way
a satisfactory determination, more in particular of
the central peaks by, b;, b» is obtained, without
complications arising from our rounding-off method.
The result was: '
b5 ba b7 bg Sum
—o0'01 o o —o0'02 0’55
cutting of the system, and some computing errors can

Taking this solution as a starting point, no further | be corrected, while, starting from the original instru-

difficulty is met with, in using the graphical method
described sub 4). In this way the errors due to the

Distance from the centre 0 d
to the left —o0'80
Peaks to the right —o'8o

In order to keep the operation with B simple the
peaks in the far wings have been contracted as far
as was possible without spoiling the satisfactory
shape of A’

9. It may be of some use to have numerical
values for the accuracy reached. To this end one
can define the effective width w of A’ in a way

-+ 2°82

shown in the figure, where it s §2 mA, so that
the disturbing influence of A’ in the resulting
spectrum is fairly equal to that of a slit of width

Chosen d = *# o7k
. w= 15k h
gives B =1} 2

mental profile, also the asymmetry is taken into ac-
count. The operating-function B is finally chosen:

2d 4d 7d 12d  Total
—o'04 — —o0'025 —o'o1® .
1'00
—o0'04 —o0'06 —o0'025 —o'or®

50 mzok. The enlarging of the random errors too, can
be expressed by a numerical factor, e.g. § = root
of the sum -of the squares of B’s peaks. For our
operating-function 8 = 3'1. This means that all
random errors in O enter three times enlarged into 0'.

For computing a suitable operating-function in
practical cases the following data may be a guide
for the choice of 4 and the accuracy to be reached
(b = half-width of A, i.e. total width at 50% of
maximum height).

osh o4h o3k
o8k o7h o5k
3 5 12

Finally, I wish to thank Prof. MinNAERT for his stimulating interest and helpful discussions.

1) Taking by + b;, b; + by, by + by etc. as unknown quantities, one obtains a symmetrical system to which the Gaussian

methods are directly applicable.
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is a solution of the integral equation (1) with Gaus-
sian apparatus function. The proof is essentially the
same as in the first variant. This variant may be
regarded as a generalization of SEELIGER’s method,
which results from it if only ¢, = o. Still other vari-

ations are certainly possible and may easily be con-

structed.

6. Practical application.

This paper about the solution of the integral equa-
tion (1) is mainly meant as a contribution to the
better and easier understanding of some methods al-
ready used in literature. Some extensions and gene-
ralizations were the natural result of a new derivation
of these methods. As to the question whether they are
very useful in practical application to the material now

UTRECHT 79

available, we are, however, not quite optimistic. In
most applications of stellar and mathematical sta-
tistics only one or two correction terms are used. But
even these are often very uncertain, owing to the
scanty and inhomogeneous material and the uncer-
tainty of the “apparatus function”. In spectral optics
conditions are quite different. The line profiles may be
measured accurately and the apparatus function is
certainly reproducible. But in this very case the me-
thod of expansion in a power series is theoretically not
justified, as was pointed out in section 3. So we have to
look for future progress in the accuracy of statistical
research or to other fields of application in order to
see the above formulae applied to their full extent.

It is a pleasure to me to thank Prof. MINNAERT and
Prof. Oorr for their kind interest and helpful advice.

Instrumental distortion of weak spectral lines, by /. C. van de Hulst.

The profiles are approximated by Voier profiles. Mutual obliteration consists in adding #: and B.° separately. Application
to the photometric atlas of the solar spectrum. The apparatus function appears to be narrower than the function given in the

Atlas. Figure 1 shows all results.

Statement of the problem.

In systematic work by the joint workers of the
Utrecht Observatory on the photometric atlas of the
solar spectrum, we wanted to revise the apparatus
function. This can only be deduced from the false
profile of a narrow spectral line, on the true profile
of which we have reliable information.

True profile, false profile’ and apparatus function
are related by an integral equation. Among the well

known methods of solution 1) no convenient method |

for our purpose is found. On account of the weakness
of the lines we can characterize each profile suffi-
ciently by a few parameters. The widely used method,
however, of characterizing each profile by one para-
meter — the halfwidth — only, is certainly too
rough. We now have tried to approximate the three
functions involved by Voigt profiles with two para-
meters 3, and f,. ’

Mutual obliteration of Voigt profiles.

A symmetrical profile has a Fourier integral,
defined by . ’

o(f) = foocosxt Sflx) ctx (1)

— o0

where x = distance from the centre of the line, f(x) =
intensity or depression, ¢ = f(0) = central intensity
or central depression, £ = halfwidth = total width
at height 3¢, § = 9(9) = p h ¢ = area or equivalent
width. We expand log ¢(¢) in a power series and cut

1) Cf. section 3 of the preceding article.

off beyond the second term:

¢(t) =S . exp (—Lt—£."t"[4) (2)
Thus the profile f{(x) is approximated by a function
of well known type that we shall call a Voigt profile,
having two parameters 8, and 8,. Two particular
forms are

— —_ﬁl X) = ——ﬁx—— a
?(t) S.C : ,f( ) S'n(ﬁxz_l_xﬂ) (3 )
= S . e—ﬁ22t2/4’ — S . ! — e—x2/‘322 b
o0 f1) =S . e lEe ()

The first one is a dispersion profile, having extended
wings; the second one is a Gaussian profile. Up to
now the Voigt profiles have been formulated as
obliterations of a dispersion profile and a Gaussian
profile. We now observe that mutual obliteration of
two Voigt profiles always yields a new Voigt profile. In
mutual obliterations of arbitrary functions the Fou-
rier integrals are multiplied. Hence according to (2),
in order to obliterate a Voigt profile by another
Voigt profile, we must multiply both areas §, add
both parameters (3, and add both squares 3,°. The
reverse process consists in a division and two sub-
tractions. The processes can be graphically repre-
sented by addition and subtraction of the vectors
(B B |

Voigt profiles ) and their halfwidths ?) have been
computed for a number of values of (3,/83, ranging

1y F. HyertiNg, Ap. 7. 88, 508, 1938, giving references.
2) R.Mmrkowskr & H.Brick, <. f. Physik, 95, 299, 1935.
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TABEE I..

Profiles in second order of the photometric atlas, unit = 10-¢}; primary data from measurements or from
' theory are shown by *.

h B2 B B:/B. ) source
O’ false profile mean values for 10°'50% 367 122 3’50 1°05% 141 measured
O true profile six Og-lines 302 148 o1 o025 58 1°56 from O,
O, abs. coeff. near 16300 232 1°16%  ©00* o000 1°57 ALLEN’s
: ) . . theory
A apparatus function 842 219 121 348 063 131 = 0'—0
A theoretical apparatus function 640 107*  9* 31 034 122 theory
Ne’ false profile } Neon emission- 1220% 305 © 265 514 0'59% 130 measured
Ne true profile line 25852 7’30 08 144 3978 o023 117 = Ne'—A
\ Ti’ false profile mean values for 16'80* 252 707 840 o'30* 120 | measured
Ti true profile six Ti-lines 13’15 033 586 765 o004 108 = Ti"—A
Ti, abs. coeff. near 15900 12’50 033 530 730 o004 108 from Ti

from 0 t0 . In addition to the halfwidths £ and
central ordinates ¢, we computed the factor p = S/ke,
introduced . by Arren!). This factor ranges from
106 for a purely Gaussian profile to 1°57 for a purely
dispersion profile.

Application to the atlas of the solar spectrum.

Some lines near 16000 in the second order were
investigated. The results are shown in Table 1 and
in Figure 1. For the different lines observed, analy-
sis of profiles by several numerical, graphical and
analytical methods gave consistent values of 3, and
f3., indicating that the approximation by Voigt
profiles is a good one. All breadths 3., 8, and & are
expressed in micro wavelengths (unit = 107%1), in
order to make lines of slightly different wavelengths
inteércomparable. One more decimal than warranted
is written. The probable error of % is 0°6 micro
wavelengths = 0°08 mm in the tracings of the atlas.

The course of the computations follows the scheme
given above. A reliable true profile of the atmos-
pheric oxygen lines is known from theory. This
compared to the false profile then yields the apparatus
function, which, finally, is used for finding true
profiles of the Ne and Ti-lines. A few further remarks
will elucidate the meaning of Table 1.

The lines, though weak, already diverge from the
linear curve of growth. This fact is accounted for

by the slight differences between O and O,, Ti and

Ti,.

The atmospheric oxygen lines, which are basic to all
results, will be treated in another paper. ALLEN’s
theory 2), though not wholly correct, will do for our
purpose. On each level the absorption coefficient is

‘a combination of damping (8,) and Doppler effect
(B.). We assumed 3, = b, = 232 on Mt Wilson

1) C. W. ALLen, 4p. 7. 85, 165, 1937.
2) C. W. Avren, 4p. 7. 85, 156, 1937.

level. Integration over the height of the atmosphere
reduces 3, to £ b, and f8,” to nearly zero.

~ The resulting apperaius function is much broader
than the theoretical function A, of an ideal grating
spectrograph. But it is considerably narrower than

the function given in the preface of the atlas, having

h = 10°2.

The profile of the Neon emission line photographed
by MULDERs in order to derive the apparatus function
can now be unterstood *). The true profile appears .
to have a considerable width as was already stated
by ALLEN 2?). Experimental evidence shows that the
Neon lines are very sensitive to the mode of
excitation of the tube. The value £ = 7'3 now
found is consistent with the 2 = 5'8 for moderate
current'3). ’ '

It was very satisfactory to find the absorption
cocfficient of the solar fitanium lines to be of nearly

Ficure 1.
Obliteration by vector addition.

1) We used the original profile, not the narrowed profile
reproduced in the atlas. :

2) . W. ALien, 4p. 7. 85, 165, 1937.

3) G. Baraise & R. GrisLAIN, Acad. Roy. Belg., Cl. d. sci.

| 28, 130, 1942.
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